构造。
文献中,志村五郎的方法,很大程度上是来源于代数几何的。
他从具体计算中,看到了一些精致的特殊结构。
但也因此,他的方法太过具体,以至于很难直接推广到一般情况。
陈舟在下载的文献中,翻找着,很快锁定了目标。
快速双击鼠标左键,打开文献。
陈舟看了一眼,轻声说道:“虽然志村五郎没有推广到一般情况,但是朗兰兹教授做到了……”
草稿纸上,陈舟开始梳理这两篇文献的内容。
由朗兰兹教授推广到一般情况的,就是现代数学中,大名鼎鼎的朗兰兹纲领。
朗兰兹的洞见在于,他看出了这些结构背后的表示论内核。
他系统的将代数群的无穷维表示,引进到数论中,找到了一个推广到一般情况的全局性纲领。
草稿纸上,陈舟写到:
【通常认为朗兰兹纲领由两部分组成,第一部分称为互反猜想,它描述了数论与表示论的对应关系。
最一般的猜测是,otive是等价于相当一部分自守形式的。
特别的它指出伽罗瓦表示,应该等价于代数群的表示。
因而otivicl函数,等价于自守l函数。
第二部分则称之为,函子性猜想,它描述了不同群之间的表示的联系……】
这段话写完后,陈舟就这么看着这段话,怔怔出神。
不得不说,朗兰兹纲领的意义深远。
它可以对最一般的l函数,证明黎曼ζ函数的性质2。
并且导出一系列困难的猜想,比如说,阿廷猜想。
而经过几十年的努力,数学家们对于朗兰兹纲领的理解,也有了很大的进展。
杰出的代表性学者,包括菲尔兹奖得主弗拉基米尔·德林费而德、洛朗·拉福格和吴保珠教授。
不过,距离完整的纲领,仍然非常遥远。
但必须要提的是,朗兰兹纲领的范围,也还在不短扩展。
类比经典的纲领,数学家们又发展出了几何朗兰兹、p-adic朗兰兹。
甚至于在物理上,爱德华·威腾教授还提出了类似的朗兰兹对偶。
它们牵涉到了非常不同的领域,使用的也是非常不同的方法。
但是它们都展现出了,极深层次的相似性。
从不同的角度,丰富了朗兰兹纲领本身。
而朗兰兹纲领一个最新的,并且值得一提的进展,来自于德国的天才数学家彼得·舒尔茨正在进行的工作。
舒尔茨利用由他发展的p-adic几何类比函数域的情形,去证明局部数域的情形。
想到这,陈舟的嘴角露出了一丝微笑。
随即,他再次拿出一张新的草稿纸,快速的在上面写着。
陈舟终于知道先前那种奇怪的感觉是什么了。
一开始,他只是打算梳理“伽罗瓦群的阿廷l函数的线性表示”这个课题,所牵涉的研究内容。
可随着时间的推移,陈舟居然就这么,虽显粗糙,但还算完整的,以黎曼ζ函数和l函数为线索,梳理了一遍现代数学。
并且把现代数学里,特别是代数几何领域的重要问题,列了一遍。
这里面,包括了代数几何、代数拓扑、代数数论、调和分析、自守形式、平展上同调、伽罗瓦表示、otivicl函数、朗兰兹纲领、bsd猜想、贝林森猜想、阿廷猜想,等等等等。
更加令陈舟没想到的是,他梳理的所有内容,竟然都有着一丝联系。
这也从另一个角度,令陈舟明白了一件事。
那就是,现在的数学,没有纯粹意义上的独立的数学分支。
每个数学分支都是交叉互融的。
陈舟也有一丝庆幸。
庆幸自己构造了出了分布解构法这个数学工具,并且在不断的完善它。
很快,陈舟停下了手中的笔。
草稿纸上,出现了一幅示意图。
陈舟把这些内容,完整的用图示的方法,展示了出来。
里面有猜想,也有已知的结果。
但是,从现在来看,陈舟所梳理内容中,几乎所有的猜想,都还非常遥远。
每一个也许都足以耗尽一个人的毕生精力。
然而,正是其困难和深刻,吸引了无数人。
某种程度上,数学家和探险家,其实是一类人。
真要说起来,从某种角度来看,陈舟先前解决的克拉梅尔猜想也好,杰波夫猜想也好,都只是解析数论这一小块的。
放在整个现代数学来看,真的不算什么。
可以说是,渺小之数学。
但也正是这种每一